Algorithmic Self-Assembly of Circuits

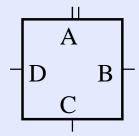
Michael deLorimier
Alexandre Mathy
Dustin Reishus
Rolfe Schmidt
Bilal Shaw
Li Chin Wong

Overview

- Introduction
 - $\star T = 2$ Model of Self-Assembly
 - ★ Cellular Automata Model of Self-Assembly
 - ★ Self-Assembled Circuits
- Fast Fourier Transform
 - ★ FFT Networks
- Self-Assembly of FFT Networks
 - ★ CA Rules
 - ★ Particles and Collisions
 - ★ Wiring and Logic
- T = 2 Tile System for FFT
- Error Correction
- What's next?

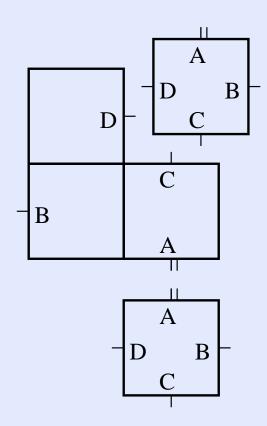
T=2 Model of Self-Assembly

• Tiles are non-rotatable squares with "glues" on each side.



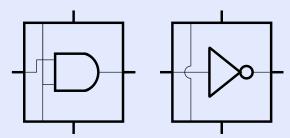
• Each glue has a strength. A tile can stick if it can form one strength 2 bond or two strength 1 bonds.

T=2 Model of Self-Assembly

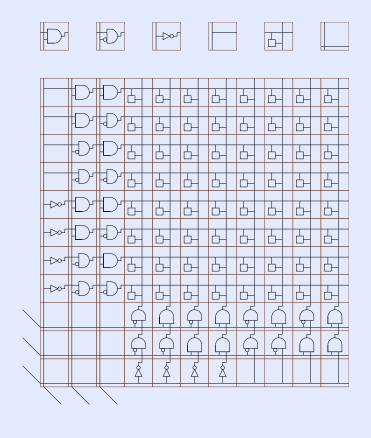


Self-Assembled Circuits

• It may be possible to attach wires and gates directly to the top of the tiles. The tiles then self-assemble to form a circuit.



Self-Assembled Memory Array



The Fast Fourier Transform

• The Fourier transform is useful in many applications. For computations we always us a discrete Fourier transform.

$$\hat{f}(\xi) = \sum_{x=0}^{N} f(x)e^{-2\pi i x \xi/N}$$
 $\xi = 0, \dots N$

• A straightforward implementation would require $O(N^2)$ operations, but we can divide and conquer to do much better. Notice that

$$\hat{f}(\xi) = \hat{f}_{\text{even}}(\xi) + e^{-2\pi i \xi/N} \hat{f}_{\text{odd}}(\xi)$$

when $\xi < N/2$ and

$$\hat{f}(\xi) = \hat{f}_{\text{even}}(\xi - N/2) - e^{-2\pi i \xi/N} \hat{f}_{\text{odd}}(\xi - N/2)$$

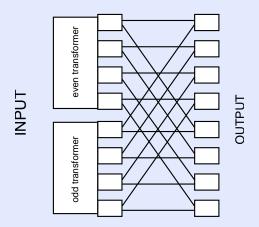
when $\xi >= N/2$.

• So we can evaluate this recursively. Running time:

$$T(n) = n + 2T(n/2) = \Theta(n \lg n)$$

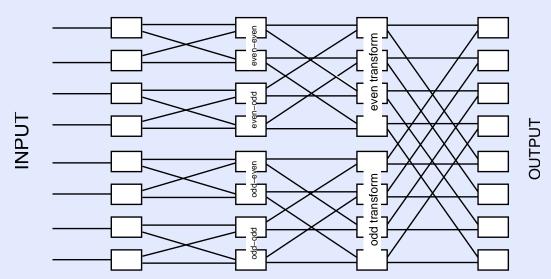
A Fast Fourier Transform Network

• If we had a networks that compute \hat{f}_{even} and \hat{f}_{odd} , then it is easy to build a network for the full Fourier transform:



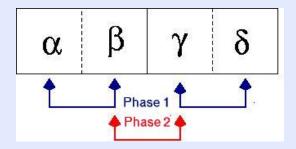
A Fast Fourier Transform Network

So we build the network recursively:



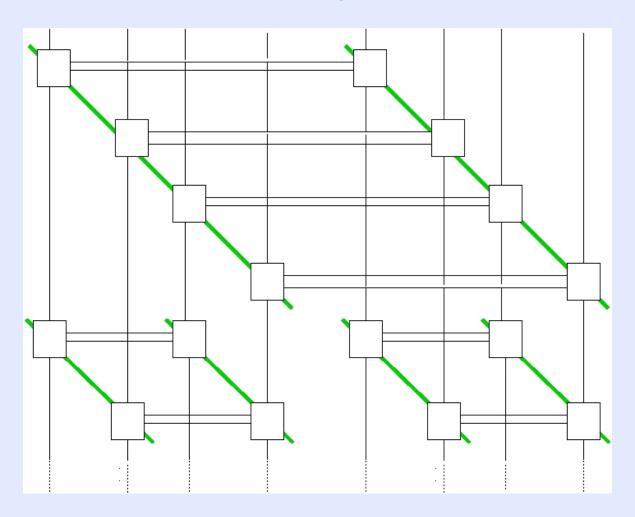
CA rules for building an FFT network

- 1D cellular automaton
- Margolus Neighborhood

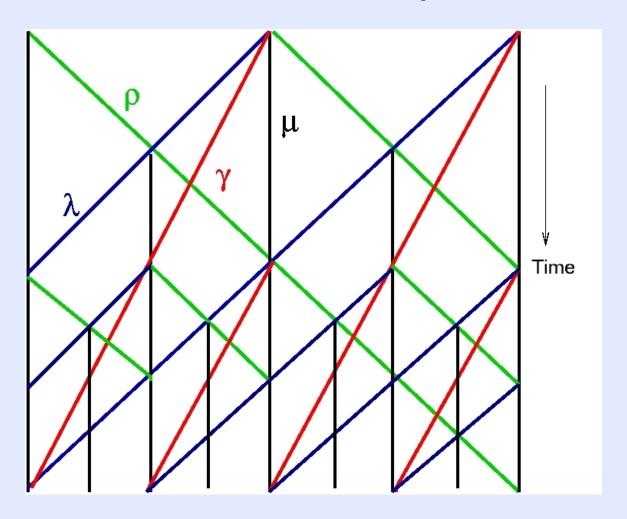


• Design in terms of particles and collisions

FFT Layout



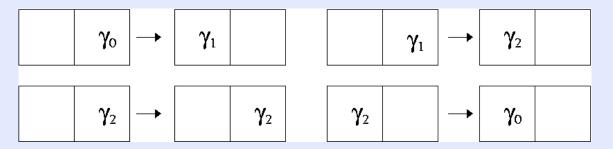
CA collision map



Particles

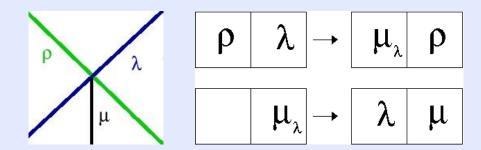
• A left moving particle with unit speed.

• A left moving particle with half speed.

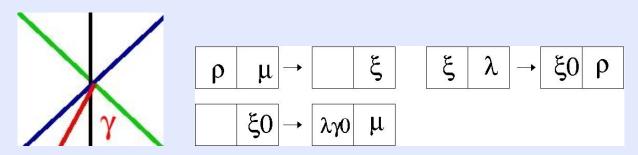


Collisions

• λ and ρ



• λ and ρ hit a μ



Other Issues

- Phase between λ and ρ
- Termination
- Number of symbols can grow as a power of logical particles.
- Number of explicit rules can grow as a power of symbols.

Simulating 1D cellular automata with the T=2 tile model

A simple 1D CA

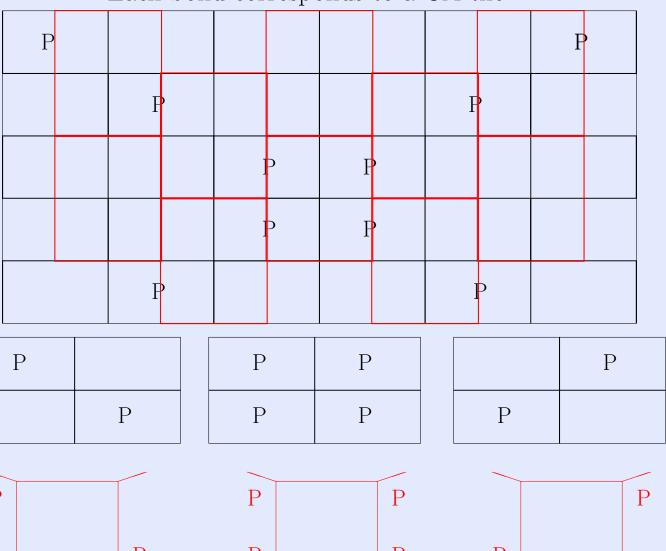
Р					Р
	Р			Р	
		Р	Р		
		Р	Р		
	Р			Р	

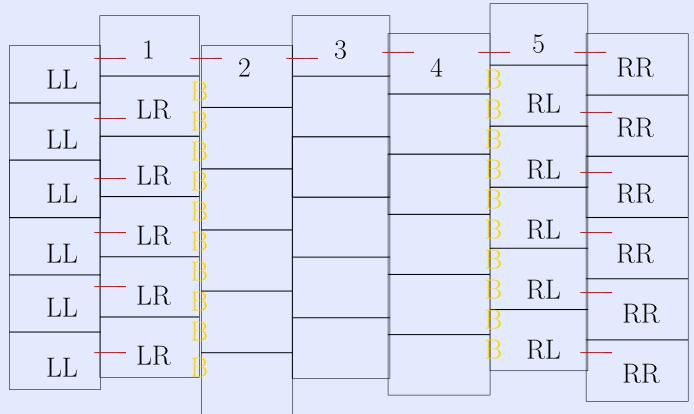
Р	
	Р

P	Р
P	Р

	Р
Р	

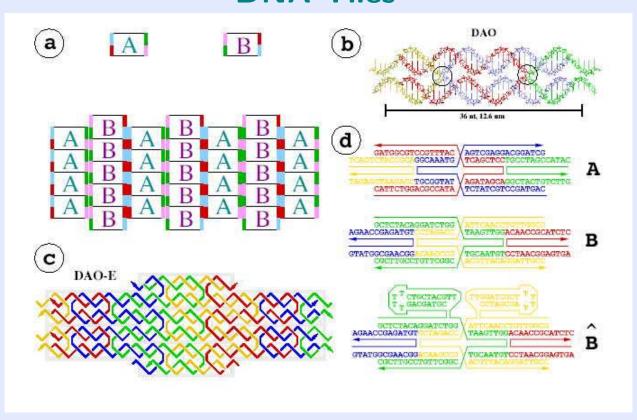
Each tile corresponds to a CA rule: Each bond corresponds to a CA tile





A bounded CA, red lines indicate strength 2 bonds All other bonds are strength 1 b's indicate boundary bonds
If the BCA has c columns + 2 edge columns then the tiles have c+1 columns + 4 edge columns.

DNA Tiles



DNA Tile Design

- # of tiles = 73
- # of sticky ends with optimization = 45 + 24 = 69
- # of complementary sticky ends = 69
- # of DNA to synthesize = 2 + 12*4 + 45*2 = 140
 - ★ If it occurs in either N/S, then need one sequence and complementary
 - ★ Total of 2 sequences
 - ★ If it occurs in both N/S and E/W then require total of 4 sequences

Sequence Design For DNA Tiles

- # of nucleotides for sticky end = 6
- Sequence space for

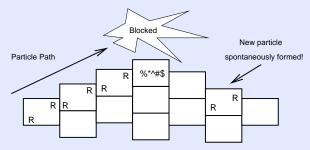
$$6bp = 4^6 = 4096$$

- Sequence space for 6bp, with 50% GC content = 1280
- Sequence complexity considerations:
 - ★ No 6bp words that anneal to sticky ends should occur in the tile core
- Potential Technical Problems:
 - ★ Stoichiometry: change of concentration as assembly occurs
 - ★ Temperature of hybridization: standardized temperature of hybridization may not be optimal for self-assembly

Error Correction

- Our solution depends on CA rule "moving particles".
- These are very sensitive to misincorporations-
 - ★ If a particle tile gets misincorporated it will propagate and be locked in quickly.
 - ★ If a misincorporation occurs on a particle path it destroys the particle.

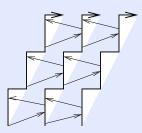
Example: Consider a tile system with one moving particle and misincorporation rate ϵ .



Expected spontaneous wires $= \epsilon A + o(\epsilon)$ Expected path length $= \frac{1-\epsilon}{\epsilon}$

Error Correction

• We can improve this by using "teams" of particles



• A team of 2k + 1 particles corrects k errors and requires k + 1 errors for spontaneous creation, but the errors can appear anywhere throughout the three "check and move" steps.

Analysis:

Expected # spontaneous particles = $O(A\tilde{\epsilon}^k)$

Expected path length = $\Omega(\exp\left[\frac{k}{6\epsilon(1-\epsilon)}\right])$

Number of tiles increase by a factor of k

TO DO: handle collisions and scattering with linear tile growth.

Conclusions

- We think T=2 circuit assembly is relatively easy.
- The same sort of tricks work to build other shapes, including
 - ★ power-law crossbar
 - ★ 2-hot decoder
 - ★ sorting network
 - ★ fat tree?
- What shapes can we build with T=2 tiles but not CA rule tiles?
- What do we need to do to make this work in the lab (or a factory)? Error correction? A 'weaker' assembly model?