

Algorithmic Self-Assembly of Circuits

Michael deLorimier Alexandre Mathy Dustin Reishus Rolfe Schmidt Bilal Shaw Li Chin Wong

Quit

Overview

• Introduction	
★ $T = 2$ Model of Self-Assembly	Home Page
\star Cellular Automata Model of Self-Assembly	
\star Self-Assembled Circuits	Title Page
• Fast Fourier Transform	
\star FFT Networks	
• Self-Assembly of FFT Networks	• •
\star CA Rules	Page 2 of 25
\star Particles and Collisions	
\star Wiring and Logic	Go Back
• $T = 2$ Tile System for FFT	
• Error Correction	Full Screen
• What's next?	Close

T = 2 Model of Self-Assembly

• Tiles are non-rotatable squares with "glues" on each side.

• Each glue has a strength. A tile can stick if it can form one strength 2 bond or two strength 1 bonds.

T = 2 Model of Self-Assembly

Self-Assembled Circuits

• It may be possible to attach wires and gates directly to the top of the tiles. The tiles then self-assemble to form a circuit.

Self-Assembled Memory Array

The Fast Fourier Transform

• The Fourier transform is useful in many applications. For computations we always us a discrete Fourier transform.

$$\hat{f}(\xi) = \sum_{x=0}^{N} f(x) e^{-2\pi i x \xi/N} \qquad \xi = 0, \dots N$$

• A straightforward implementation would require $O(N^2)$ operations, but we can divide and conquer to do much better. Notice that

$$\hat{f}(\xi) = \hat{f}_{\text{even}}(\xi) + e^{-2\pi i\xi/N} \hat{f}_{\text{odd}}(\xi)$$

when $\xi < N/2$ and

$$\hat{f}(\xi) = \hat{f}_{\text{even}}(\xi - N/2) - e^{-2\pi i\xi/N} \hat{f}_{\text{odd}}(\xi - N/2)$$

when $\xi >= N/2$.

• So we can evaluate this recursively. Running time:

 $T(n) = n + 2T(n/2) = \Theta(n \lg n)$

A Fast Fourier Transform Network

• If we had a networks that compute \hat{f}_{even} and \hat{f}_{odd} , then it is easy to build a network for the full Fourier transform:

A Fast Fourier Transform Network

So we build the network recursively:

CA rules for building an FFT network

- 1D cellular automaton
- Margolus Neighborhood

• Design in terms of *particles* and *collisions*

FFT Layout

IN THE OF TECHNOLOGY

Particles

• A left moving particle with unit speed.

$$\lambda \longrightarrow \lambda$$

• A left moving particle with half speed.

Collisions

• λ and ρ

• λ and ρ hit a μ

- Phase between λ and ρ
- Termination
- Number of symbols can grow as a power of logical particles.
- Number of explicit rules can grow as a power of symbols.

Simulating 1D cellular automata with the T=2 tile model

A simple 1D CA

Home Page Title Page **▲** ◀ ▶ Page 17 of 25 Go Back Full Screen Close Quit

THE REPORT OF TH	

Home Page
Title Page

All other bonds are strength 1 b's indicate boundary bonds If the BCA has c columns + 2 edge columns then the tiles have c+1 columns + 4 edge columns.

Quit

Close

DNA Tiles

Home Page
Title Page
44 >>
▲ ▶
Page 20 of 25
Go Back
Full Screen
Close
Quit

DNA Tile Design

- # of tiles = 73
- # of sticky ends with optimization = 45 + 24 = 69
- # of complementary sticky ends = 69
- # of DNA to synthesize = $2 + 12^{*}4 + 45^{*}2 = 140$
 - \star If it occurs in either N/S, then need one sequence and complementary
 - \star Total of 2 sequences
 - \star If it occurs in both N/S and E/W then require total of 4 sequences

Home Page
Title Page
• •
Page 21 of 25
Go Back
Full Screen
Close
Quit

Sequence Design For DNA Tiles

- # of nucleotides for sticky end = 6
- Sequence space for

$$6bp = 4^6 = 4096$$

- Sequence space for 6bp, with 50% GC content = 1280
- Sequence complexity considerations:
 - \star No 6bp words that anneal to sticky ends should occur in the tile core
- Potential Technical Problems:
 - \star Stoichiometry: change of concentration as assembly occurs
 - \star Temperature of hybridization: standardized temperature of hybridization may not be optimal for self-assembly

Error Correction

- Our solution depends on CA rule "moving particles".
- These are very sensitive to misincorporations-
 - \star If a particle tile gets misincorporated it will propogate and be locked in quickly.
 - \star If a misincorporation occurs on a particle path it destroys the particle.

Example: Consider a tile system with one moving particle and misincorporation rate ϵ .

Error Correction

• We can improve this by using "teams" of particles

• A team of 2k + 1 particles corrects k errors and requires k + 1 errors for spontaneous creation, but the errors can appear anywhere throughout the three "check and move" steps.

Analysis:

Expected # spontaneous particles = $O(A\tilde{\epsilon}^k)$ Expected path length = $\Omega(\exp\left[\frac{k}{6\epsilon(1-\epsilon)}\right])$ Number of tiles increase by a factor of k

TO DO: handle collisions and scattering with linear tile growth.

Conclusions

- We think T = 2 circuit assembly is relatively easy.
- The same sort of tricks work to build other shapes, including
 - \star power-law crossbar
 - \star 2-hot decoder
 - \star sorting network
 - \star fat tree?
- What shapes can we build with T = 2 tiles but not CA rule tiles?
- What do we need to do to make this work in the lab (or a factory)? Error correction? A 'weaker' assembly model?

