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Overview

• Introduction

? T = 2 Model of Self-Assembly

? Cellular Automata Model of Self-Assembly

? Self-Assembled Circuits

• Fast Fourier Transform

? FFT Networks

• Self-Assembly of FFT Networks

? CA Rules

? Particles and Collisions

? Wiring and Logic

• T = 2 Tile System for FFT

• Error Correction

• What’s next?



T = 2 Model of Self-Assembly

• Tiles are non-rotatable squares with “glues” on each side.
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• Each glue has a strength. A tile can stick if it can form one strength 2 bond or two
strength 1 bonds.



T = 2 Model of Self-Assembly
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Self-Assembled Circuits

• It may be possible to attach wires and gates directly to the top of the tiles. The
tiles then self-assemble to form a circuit.



Self-Assembled Memory Array



The Fast Fourier Transform

• The Fourier transform is useful in many applications. For computations we always us a discrete Fourier trans-
form.

f̂(ξ) =
N∑

x=0

f(x)e−2πixξ/N ξ = 0, . . . N

• A straightforward implementation would require O(N2) operations, but we can divide and conquer to do much
better. Notice that

f̂(ξ) = f̂even(ξ) + e−2πiξ/N f̂odd(ξ)

when ξ < N/2 and

f̂(ξ) = f̂even(ξ −N/2)− e−2πiξ/N f̂odd(ξ −N/2)

when ξ >= N/2.

• So we can evaluate this recursively. Running time:

T (n) = n + 2T (n/2) = Θ(n lg n)



A Fast Fourier Transform Network

• If we had a networks that compute f̂even and f̂odd, then it is easy to build a network
for the full Fourier transform:
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A Fast Fourier Transform Network

So we build the network recursively:
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CA rules for building an FFT network

• 1D cellular automaton

• Margolus Neighborhood

• Design in terms of particles and collisions



FFT Layout



CA collision map



Particles

• A left moving particle with unit speed.

• A left moving particle with half speed.



Collisions

• λ and ρ

• λ and ρ hit a µ



Other Issues

• Phase between λ and ρ

• Termination

• Number of symbols can grow as a power of logical particles.

• Number of explicit rules can grow as a power of symbols.



Simulating 1D cellular automata

with the T=2 tile model
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A simple 1D CA
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Each bond corresponds to a CA tile
Each tile corresponds to a CA rule:
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A bounded CA, red lines indicate strength 2 bonds
All other bonds are strength 1
b’s indicate boundary bonds
If the BCA has c columns + 2 edge columns then
the tiles have c+1 columns + 4 edge columns.



DNA Tiles



DNA Tile Design

• # of tiles = 73

• # of sticky ends with optimization = 45 + 24 = 69

• # of complementary sticky ends = 69

• # of DNA to synthesize = 2 + 12*4 + 45*2 = 140

? If it occurs in either N/S, then need one sequence and complementary

? Total of 2 sequences

? If it occurs in both N/S and E/W then require total of 4 sequences



Sequence Design For DNA Tiles

• # of nucleotides for sticky end = 6

• Sequence space for
6bp = 46 = 4096

• Sequence space for 6bp, with 50% GC content = 1280

• Sequence complexity considerations:

? No 6bp words that anneal to sticky ends should occur in the tile core

• Potential Technical Problems:

? Stoichiometry: change of concentration as assembly occurs

? Temperature of hybridization: standardized temperature of hybridization may
not be optimal for self-assembly



Error Correction
• Our solution depends on CA rule “moving particles”.

• These are very sensitive to misincorporations-

? If a particle tile gets misincorporated it will propogate and be locked in quickly.

? If a misincorporation occurs on a particle path it destroys the particle.

Example: Consider a tile system with one moving particle and misincorporation rate ε.
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spontaneously formed!

Expected spontaneous wires = εA + o(ε)
Expected path length = 1−ε

ε



Error Correction
• We can improve this by using “teams” of particles

• A team of 2k + 1 particles corrects k errors and requires k + 1 errors for spontaneous creation, but the errors
can appear anywhere throughout the three “check and move” steps.

Analysis:

Expected # spontaneous particles = O(Aε̃k)

Expected path length = Ω(exp
[

k
6ε(1−ε)

]
)

Number of tiles increase by a factor of k

TO DO: handle collisions and scattering with linear tile growth.



Conclusions

• We think T = 2 circuit assembly is relatively easy.

• The same sort of tricks work to build other shapes, including

? power-law crossbar

? 2-hot decoder

? sorting network

? fat tree?

• What shapes can we build with T = 2 tiles but not CA rule tiles?

• What do we need to do to make this work in the lab (or a factory)? Error correction?
A ’weaker’ assembly model?


